Physics I

Syllabus

- I. Physical Quantities, Scalars, and Vectors
 - A. Physical quantities and SI units
 - B. Dimensional analysis
 - C. Problem solving method
 - D. Accuracy, precision, and uncertainty
 - E. Significant figures, error propagation, and scientific notation
 - F. Scalar quantities, vectors, and unit vectors
 - G. Vector addition and subtraction
 - H. Vector dot product and cross product
- II. Linear Motion
 - A. Position, displacement, velocity, and acceleration
 - B. Kinematic equations for constant acceleration
 - C. Motion graphs
 - D. Velocity and position by integration for varying acceleration
 - E. Free fall motion and projectile motion
 - F. Reference frames and relative velocity
- III. Forces and Newton's Three Laws of Motion
 - A. Types of forces
 - B. Free body diagrams
 - C. Newton's three laws of motion
 - D. Terminal speed
 - E. Uniform circular motion and radial acceleration

IV. Work, Kinetic Energy, and Potential Energy

- A. Work and kinetic energy
- B. Gravitational and elastic potential energies
- C. Work-energy theorem
- D. Conservative and non-conservative forces
- E. Conservation of energy
- F. Average and instantaneous power
- G. Force and potential energy relationship

V. Linear Momentum and Collisions

- A. Linear momentum and net force
- B. Impulse and the impulse-momentum theorem
- C. Momentum changes in colliding bodies
- D. Conservation of momentum in collisions
- E. Elastic, inelastic, and perfectly inelastic collisions
- F. Center of mass and center of gravity
- G. Rocket propulsion

VI.Rotation of Rigid Bodies

- A. Angular position, displacement, velocity, and acceleration
- B. Relating angular and linear variables
- C. Radial and tangential acceleration
- D. Uniform and nonuniform circular motion
- E. Kinematic equations for constant angular acceleration
- F. Angular velocity and position by integration for varying acceleration
- G. Rotational inertia and its derivations
- H. Parallel-axis theorem

VII. Torque, Rotational Energy, and Angular Momentum

- A. Torque and Newton's laws of motion in terms of rotation
- B. Static equilibrium
- C. Work, kinetic energy, and power in rotation
- D. Rolling bodies and total kinetic energy
- E. Angular momentum and the conservation of angular momentum

VIII. Elasticity

- A. Stress and strain
- B. Elastic moduli and Hooke's law
- C. Stress-strain diagrams

IX.Fluids

- A. Static and dynamic fluids
- B. Density
- C. Pressure and Pascal's law
- D. Buoyancy force and Archimedes's principle
- E. Surface tension
- F. Continuity equation
- G. Bernoulli's equation

X. Periodic Motion

- A. Periodic motion and restoring forces
- B. Amplitude, period, frequency, and angular frequency
- C. Simple harmonic motion (SHM)
- D. Position, velocity, acceleration, and amplitude in SHM
- E. Mechanical energy in SHM
- F. Simple and physical pendulums

XI.Mechanical Waves

- A. Transverse and longitudinal waves
- B. Wave function, velocity, and acceleration of wave particles
- C. Speed of mechanical waves
- D. Power and intensity of mechanical waves
- E. Wave interference and superposition
- F. Standing waves on a string
- G. Normal modes of a string fixed at both ends

XII.Sound and Hearing

- A. Sound waves
- B. Sinusoidal sound waves
- C. Loudness, pitch, timbre, and noise
- D. Speed of longitudinal waves in gases, liquids, and solids
- E. Sound intensity
- F. Standing sound waves and normal modes
- G. Resonance and resonance curves
- H. Sound wave interference
- I. Beats
- J. Doppler effect